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INTRODUCTION 

For many non-linear problems it is generally necessary to obtain 

solutions by either numerical or approximate methods. In a recent paper 

(1) it was noted that typical examples of these problems are.those in- 

volving laminar boundary layer flows and non-linear heat conduction as 
investigated by Biot's variational method. In that paper use of a trans- 
cendental approximation in laminar boundary layer analysis was examined. 

In the present paper, use of the same transcendental approximation in 
non-linear heat conduction is discussed. 

In previous studies of typical one-dimensional, transient heat 
conduction problems with non-linear boundary conditions (2, 3) the 
temperature distribution has been represented subject to a two-fold 
approximation. .First, the boundary condition infinitely distant from the 
surface is brought to a finite distance from the surface, this distance 

being called the penetration depth; then the temperature is approximated 
by a polynomial in the region from the surface to the penetration depth, 
being regarded as constant at greater depths. For the cases considered 

previously, it is possible to obtain quickly at least the asymptotic 
solutions for short and for long times. However, it is not clear that 

the solutions will be roughly of equal accuracy, since the polynomial 
profile used may be less suited to represent the true profile at one of 
the (asymptotic) times than at the other. The profile function used 
here is adaptable to the extent that the profile shapes obtained for each 
asymptotic case need not be the same. Further, it is known that the actual 
profile must be some form of transcendental function, and a transcendental 
approximation can have a closeness of indefinitely high order to the 

exact solution. 
In this paper a particular example of a transient conduction problem 

with a non-linear boundary condition is considered, for which other solu- 
tions have been obtained. This example consists of unsteady one-dimensional 
conduction in a semi-infinite slab with the boundary condition that the heat 
flux at the surface is proportional to the n-th power of the surface temper- 
ature and with the initial condition that the slab temperature is uniform, 
forming the reference zero, i.e. the zero of an appropriate empirical 
temperature scale. 



Solutions for this form of boundary condition are useful for a 

variety of problems. One practical problem for which they have been 

used is transient conduction due to unsteady radiation in an enclosure. 
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coefficient 
profile parameter, function of n 

coefficient 
profile parameter, function of n 
coefficient 
specific heat 
dissipation function; also, a coefficient 

exponential integral 
general exponential integral 

heat flux at x = 0 

coefficient 
constants 
heat flow field; $, heat flux field 

a specific integral 
m-th repeated integral of the error function 

coefficient 
coefficient 
thermal conductivity; also, running index 
function of u 

0 

coefficients 
running index 
exponent 
unit normal vector 

running index 

thermal force 
i-th generalized coordinate; 913 surface temperature; 

92 , penetration depth 

surface 
arbitrary constant temperature 

time 
exp (a + bn) 
exp a 
a thermodynamic potential 

volume 
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x, Y3 = 

pro n 

a , B 0’ Yo 
r(;l+n) 

Y 
E: 

5 

11 
0 

P 
u 

space coordinates 
dimensionless temperature profile approximation 

coefficients 

gamma function 

Euler's constant 

an arbitrary small number 

dimensionless space variable 

general variable 

temperature 

density 

scaling factor 

dimensionless time 

dimensionless penetration depth 

dimensionless surface temperature, x = 0 
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Biot's Variational Method for Transient Conduction 

A variational principle for analysis of heat conduction has been 

described extensively by Biot (t, 51, who has also given some examples of 
its use. An alternative, complementary method for deriving the principle 
was described by Boley & Weiner (6). In essence, it is supposed that one 

can consider a heat flow vector field I;I to exist within a body, such that 

the time-rate of change $ is the heat flux across an area normal to fi . 

From the First Law, in the absence of work, one has that 

cpe = -div F Cl1 

In particular, if the heat flow field can be expressed as a function of 

n "generalized coordinates" qi (t) , so that 

H= H (qi; x, y¶ ', t, c21 

then it is possible to write a variational principle in the form 

i?!!L+i?L= 
aqi ai 

Qi 
i 

where 

Qi = J e f?.(aG/aqi) ds 
S 

and,common to the n equations [31, 

v= J (1/2)cp e2 dv 

D= & J Ii2 dv . 

c33 

c41 

c51 

C61 

This variational principle is equivalent to the heat conduction equation 

in an isotropic medium. When the temperature field is one-dimensional 

in space, it and the heat flow field are related simply. In order to 

utilize the method, some particular form of temperature profile is assumed, 
and a sufficient number of generalized coordinates assigned to describe 
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it. From eqn. Cl] the heat flow field corresponding to the assumed 

profile can be determined, and subsequently the dissipation function D 

and the potential V . 

As an alternative to determining the n generalized coordinates 

from eqn. C31, it is possible to determine one through use of a compatibi- 

lity condition on the surface heat flux (e.g., by forcing Ho for-a semi- 

infinite body to satisfy exactly the heat flux boundary condition), 

leaving (n - 1) coordinates to be determined from the variational 

principle. 

The Profile Function 

The function for profile approximation introduced by Richardson 

(7) is 

pro n = exp C- exp (a + bn)] / exp C- exp al 

and this function satisfies the conditions 

pro n = 1 at rl = 0 

pro n + 0 as r)-+-. 

This profile function is a two-parameter profile, and in general two in- 

dependent equations are required in order to determine the relevant 

parameters. 

The Differential Equations for the Profile Function 

The equations found by Biot's method depend upon the specific 

temperature profile which has been assumed. It is convenient to write 

c71 

n = x/q2 , 
u = exp (a + bn) , 

and U 
0 

= exp a , 

6 



so that the profile assumed is 

0 = ql exp t-u) / exp (-uo) . Cf31 

It is also assumed that the heat flux boundary condition F 'belongs to 

the class of functions 

F = feon = f qln . c91 

It is convenient to form dimensionless groups for ql, q2 and t , but it 

is found that the parameters of the problem do not provide enough quanti- 
ties and it is necessary to introduce an arbitrary temperature or length 
(which subsequently cancels out in the solutions). If the former is chosen 
and denoted by .T , the following dimensionless groups can beestablished: 

9 = ql / T 

X = q2f T n-1 / k 

T = t f2 T2('-l) / kcp 

Cl01 

The heat flow field is given by 

cPqlq2 
H = b exp C-u01 Ei C-u) , 

so that by determining eqn. C3l for ql it can be shown that 

J$ + (3/2)AJIx); + A$K2 = 0 Cl21 

Cl11 

while the surface flux compatibility condition gives that 

$x + qti = KJln . Cl31 

These equations have the same form as those obtained by Richardson (3), 

but the coefficients differ because of the different assumed profile. 
The coefficients which arise here are 
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A=l I 
O" CEi (-u)12 

b2 o exp (-2uo) dn 

B it =- I O" nexp t-u) Ei c-u) 
exp (-2~~) 

dn 
0 

c=- 
Ei (-2~~) 

b exp (-2~~) 

D=- 
Ei (-uo) 

b exp t-u01 

Cl41 

II151 

Cl61 

J =C-D 

Cl71 

K= l/D . 

In deriving eqn. [121, advantage is taken of the fact that B = A/2 , 

which can be shown by noting that n = (In u - al/b , transforming to 

U as the variable of integration, and integrating by parts. 

Equations Cl21 and Cl31 can be solved easily for the cases n = 0 

(for which there is also an exact solution) and 0 < n < 1 . The solution 

for n = 0 (i.e. constant heat flux) is 

X 

and for 0 < n c 1 the solution is 

l/2 = J 60 
q Yof 30 T 

l/2 
X -- 

A 
45 + l-n 

y. (2 - n) l/(n - 1) 
Q= KTn=-iii 

T1/2(1 - n) 

Cl81 

Cl91 

It is to be noted that this solution cannot be used near n = 1 . (In 

(3) these sets of solutions were incorrectly indicated to be asymptotic 

solutions instead of complete solutions.) 



Evaluation of Coefficients 

The next step in completing the solutions is to evaluate the co- 

efficients A, J and K . These coefficients can be obtained as functions 

of a and b . Finally a criterion can be established for obtaining a 

and b , thereby completing the solutions. 
It may be noted that Ab3, Jb and K/b are each functions of u. 

only, and therefore of a only. It can be seen from their definitions 

that Jb and K/b can be obtained from tables of exponential integrals 

using straightforward manipulations. The integral for Ab' cannot be 

evaluated directly, but the integral can be expanded in an infinite 

series which can be integrated term by term. It was found that the 

solutions required use of values of u. roughly in the range of 3.0 to 

8.0 . For small values of the argument the exponential integral can be 

written 

Ei(-u) = y t In(u) - u t (1/2!2)u2 - W3!3)u3 t . . . c201 

This series converges, but for values of u > 1 the terms initially 

increase in magnitude, making it necessary to take many terms to obtain 

accurate results. For large values of u 

Ei(-u) = ecu {u-l - uB2 t 2u -3 - (3!)u-4 t . ..I c211 

This second series is asymptotic, the terms initially converging and then 

diverging. 
It can be seen that 

exp (2~~) 0~ 
A= J 2 du b3 u EEi(-u)) u 

0 

exp (2~~) 
= 

b3 ' ' say= 
c221 

For values of u. 1_ 4 the asymptotic expansion C21l was substituted, 

giving 
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I 
OD 

I = e-2u ( i (-l)m+l (m 
U m=l 

- l)!u-m}2 g 

0 

J 

OD 
= - 

U 

e-2u kT3 (-l)k gk Umk du 
= 

Gk exp (-2~) du , II231 
U 

0 

where values of gk are g3 = 1, g4 = -2, g5 = 5, g6 = -16, g7 = 64, 

g8 = -312, etc. 

Now, the general exponential integral is defined (8) as 

J 
co 

Ep(u) = x-' exp (-xu)dx , 
1 

so that the typical integral term of I is 

J 
co 

U-k exp (-2u)du = u. 1-k Ek(2uo) 
U 

0 

I = -u o ,", (-l)k gk uik Ek (2~~) 

so that the coefficient A could be evaluated as a series of general 

exponential integrals 

A=- 
u. exp (2~~) m 

2' (-l)k g 
b3 k=3 

k uik Ek (2~~) . II251 

C-1 

In computation the series was summed to the smallest term; if the consequent 

maximum error was considered too large, Euler's transformation was applied, 

and further terms taken until the maximum error was reduced to a satisfac- 

tory magnitude. 

Determination of Constants for the Profile Function 

The coefficients A, J and K of the differential equations were 

determined as functions of u. and b in the last section. The values 
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of u can be found by application of the heat flux boundary condition, 

eqn. F91: 

F = f 6: = f qy = -k(ae/aX)o . 

Differentiation of eqn. [8] gives 

F= k ql b u. 1 q2 3 

which leads to 

$ 
n-l x/bu =l. 0 

Substitution of the solutions [19] gives 

b u. A K / J = M = 2(2 - n)/(3n - 5) . C261 

The left hand side of eqn. C261 is a function of u 
0 

only, but the value 

of u corresponding to a specific value of n cannot be extracted 
0 

directly. Values of M were computed for values of u. = 3.0 (1.0) 8.0 
with use of tables and the asymptotic expansion, eqn. C211, and for values 

of u < 4.0 by integration using eqn. [20]. 
O- 

In calculation at u. = 4 , 
one of the series used in determining A had to be taken to twenty-five 
terms to evaluate the integral to eight significant digits. Checks were 
made by overlapping and use of alternative series. In order to determine 

values of u o for specified n , it was found convenient and adequate to 

use linear interpolation between values of M4 vs. log u 0 - It was 

estimated that interpolation errors would correspond to less than t 0.001 M , - 
Once values of u. have been found, values of a can be determined immedi- 

ately. The values of b remain to be found. 
For the polynomial approximation of the temperature distribution the 

penetration depth is defined as the point where 13 = 0, i.e. x = q2 . 

With the profile function 8 + 0 as x + Q) and hence q2 must be defined 

differently. It is convenient to put x = q2 where e/q1 = E , where E 

is an arbitrary, very small number. From the profile function it follows 

that 
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b= ln(1 - eBa In E) . [271 

It was decided to use e = 0.01 here. It must be emphasized that the value 
of b depends upon the value of E . With this convention, it is not 

significant to compare directly the coefficients of the penetration depth 
solutions from use of polynomial and transcendental profiles. 

Results and Accuracy of Computations 

C281 

Constant-flux solution The values found for the constant-flux 

solution were u 
0 

= 2.95 , 

JI q 1.130 P2 

X = 3.18 ~~~~ 

which can be compared with Richardson's (3) parabolic approximation 

JI = 1.157 t1'2 ; x = 2.59 P2 

and with the exact solution 

J, = 1.1284 ~~~~ . 

It can be seen that the coefficient for $1~ l/2 using the profile function 
differs from the exact solution by about 0.2 per cent and from the para- 

bolic approximation by about 2.4 per cent. 

Solutions for n > 0 A set of solutions was computed for a range of 

n where the computations did not become inordinately long. In Table I 

values of a and b are provided, and in Table II values of the surface 

temperature coefficients JI/T 1/2(1-n) (p arabolic profile), $/T 1/2(1-n) 

(transcendental profile) and penetration depth coefficient (transcendental 

profile) are listed, together with the percentage differences of the sur- 

face temperature coefficients. 

For the sake of comparison, two temperature profiles have been plotted 
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in Fig. 1. The scale of slab depth n has been ,adjusted by using scaling 
factors u so that both profiles have the same slope at rj=o. It can 
be seen that the profile for the constant-flux solution has a somewhat 
different shape from that for the solution with n q 0.7 . Profiles for 
intermediate values of n fall between those shown. 

Another comparison has been made in Fig. 2 for the constant-flux 
solution. The ordinate is of temperature, normalized such that the 
temperature on the axis (which corresponds to the body surface) is always 
unity; the abscissa, the slab depth, has been adjusted such that all 
temperature profiles shown have a slope of unity at the body surface. The 
middle solid line represents the profile of the analytic solution of the 

constant flux case; two other solid lines represent the parabolic and the 
simple exponential approximations respectively. The dashed line represents 
the profile approximation used here. Since this lies so close to (and 
crosses) the analytic solution, only parts can be shown without obscuring 
the analytic solution. This figure demonstrates well that the profile 
function used here is a closer approximation than are the others cited. 

The computations using the exponential integrals were based upon the 
tables of Pagurova (8), with values for integrals beyond the range of the 
tables generated using relations given in the same reference. Computations 
for other quantities described here were made using the handbook of 
Abramowich and Stegun (9), with checks being made in relevant references 
given therein. The accuracy of the computations varies with n in the 
solutions, but it is believed to be not worse than 0.1 per cent in any 

case. 

Analytic Solutions for n = 1.0 

The analytic solution for n = 0 , i.e. constant heat flux, is well 

known. The problem can also have an analytic solution at n = 1.0 if 
the initial condition described in the Introduction is slightly altered 
so that the slab temperature is uniform but above the reference zero by an 
arbitrary amount. Without this alteration the solution recovered is the 
trivial case 3(x, t) = 0 . The arbitrary uniform temperature can be 

chosen as the unit temperature of the 8 temperature scale; the solution 
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is proportional to it. The solution can be written 

cl(x, t) - 1 = E Mm+l t(m+1)/2 irnl$::f:;i") 

m=O 1 
c291 

with 

M m+l = r( F+ 1) Mm 

tf2 xf 
T=)CCP' 5 =- 

2k 

(where f has been normalized with respect to the initial temperature). 

The function im erfcn is the m-th repeated integral of the error function, 

for which useful tables, recurrence relations, expansions and so forth 

exist. At small times, the term for m = 0 is dominant and this coincides 

with the constant flux solution discussed previously, For longer times, the 
series provides a shifting average of the repeated integrals of the error 

function. Successive integrals have profile shapes which move from the 

central profile of Fig. 2 towards the simple exponential. The approximate 

profiles found here for 0 < n < 1.0 have a trend in the same direction. 

For very long times, the asymptotic behavior of im erfcn as m-t= is 

important. This can be determined from the series expansion 

1 'm erfcn = T (-1>p ,p 
p=o 2"-P p! r(1 + Y) 

in which the terms corresponding to p = mt2, mt4, mt6, .., are under- 

stood to be zero. As m tends to infinity, it can be shown that the 

normalized repeated integral of the error function (i" erfcn/im erfc0) 

is given asymptotically by a simple negative exponential function of n . 

Discussion 

It can be seen from Fig. 1 that the solution of the problem does 

take advantage, so to speak, of the flexibility of the transcendental 
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profile by finding that different shapes are appropriate to different 

conditions. This adaptive feature of the transcendental profile should 
assist in providing results which are more accurate than with fixed 
simple profiles. This hope is borne out clearly in the constant-flux 
solution, where the accuracy of the surface temperature coefficient is 

improved by a tenfold order of magnitude compared with the simple poly- 
nomial and exponential profiles listed in Table I of Lardner's paper (2). 

It is also demonstrated by Fig. 2. 
For 0 < n c 1.0 no exact solutions exist with which the results 

can be compared. The calculations become increasingly difficult as n 

approaches unity. This is due partly to the need to generate exponential 
integrals beyond the range of available tables, and partly to the behavior 
of the profile function. In the profile function the parameter a essen- 

tially specifies the shape of the profile, while the parameter b 
specifies the extent of the profile. Thus, two profiles drawn with the 
same values of a and different values of b have the same shape, but 

not vice versa. As a + 0~ , pron + exp [-(b exp a)n 1. Over the major 
range of pro0 , this limit is approached rapidly. Even with a = 5.0 , 
pron is close to its limit. This means that if an attempt is made to fit 
the profile function to a function which is close to the simple exponential, 
the determination of a becomes extremely insensitive; large changes in a 

produce small changes in the profile shape. It is increasingly difficult 
to obtain values of a to a specified number of significant digits. 

It is noteworthy that the difference between the surface temperature 
coefficients listed in Table II increases smoothly from the value of 2.4% 

at n = 0 to 12% at n = 0.73 , the difference increasing roughly expo- 

nentially with n . The difference between surface temperature coefficients 

is sufficiently large to be significant in application. 
These differences occur because the transcendental profile changes 

its shape with n , which the parabolic profile cannot do. It is very 

probable that the solutions with the transcendental profile are more 
accurate, but at present this cannot be demonstrated directly. However, 

it is possible to make comparisons with the analytical solutions for n= 0 

and n= 1.0 and show that the temperature profile shape generated here 

for 0 < n < 1.0 varies smoothly between the analytic limits. The signi- 
ficant feature of the results upon which a comparison can be based is the 
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parameter a , which determines the shape of the profile. It has been 
noted above that the asymptotic behavior of the analytic solution for 

n = 1.0 is that the profile becomes a simple exponential; in approximat- 

ing this shape a becomes large. For n = 0 , the short-time solution 
is valid at all times, so that in this instance it is also the long-time 

solution. The values of a for solutions in the range 0 < n < i.0 are 

shown in Fig. 3. In this it can be seen that the values found here fit 

well between the analytic limits. This feature is absent in all fixed 

profiles, such as polynomials. The comparison provides conducive evidence 

that the solutions presented here are considerably more accurate than the 

corresponding solutions available previously. 

Summary 

(1) 

(2) 

(3) 

(4) 

(5) 

Biot's variational method is applied to a problem of transient 

heat conduction in a semi-infinite slab subject to a non-linear 

boundary condition. 

A two-parameter transcendental approximation is used for the 

temperature profile. This approximation has the advantage that its 

shape is not fixed, so that the profile determined for each case 

considered can have the shape most appropriate to it. 

Computations for solutions utilizing the general exponential 

integral are described, and two exact solutions are mentioned for 

cases which bound the examples computed. 

Comparison of the variational solution using the transcendental 

approximation with the exact solution for the limiting case of 

constant heat flux demonstrates an error of less than 0.2 per cent 

in the surface temperature coefficient and very close representation 

of the true temperature profile. This corresponds to a very consider- 

able improvement over solutions obtained previously with other 

profile approximations. 
Comparison of the variational solution for other examples shows 

that the computed profile shapes have a uniform variation which is 

in the correct direction to merge with the limiting case of surface 

heat flux directly proportional to surface temperature. 
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(6) It is concluded that the solutions obtained here using the 
transcendental approximation are considerably more accurate than those 
previously available. 
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n a b 

0.1 1.13287 0.90959 
0.2 1.21696 0.86023 
0.3 1.31709 0.80370 
0.4 1.43553 0.73998 
0.5 1.57704 0.66855 

0.6 1.75592 0.58528 
0.7 1.98445 0.49042 

0.73 2.06623 0.45951 

Table I 

Solutions for 0 c n < 1 
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Table II 

Surface temperature coefficients Penetration depth Difference in 

n O/T 
1/2(1-n) 

X/T 
l/2 surface tempera- 

parabolic transcendental transcendental ture coefficients 

profile profile profile (per cent) 

0.1 1.1347 1.1053 3.09136 2.7 

0.2 1.0996 1.0658 3.05915 3.2 

0.3 1.0453 1.0064 3.01486 3.9 

0.4 0.96170 0.91769 2.96901 4.8 

0.5 0.83340 0.78593 2.92637 6.0 

0.6 0.64006 0.59309 2.76203 7.9 

0.7 0.37095 0.33493 2.57070 10.7 

0.73 0.28085 0.25068 2.49858 12.0 
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Figure l.- Comparison of the shapes of temperature profiles. The profiles have 
been dram with different scale factors to make the initial slopes identical. 
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Figure 2.- Comparison of the exact temperature profile for the cons,tant flux 
solutions with various approximations. The approximation function used 
here (dashed curve) gives a very close approximation to the exact profile. 
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